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3D Quasi-Geostrophic Flow



Physical Model

• QG - a model for large time-scale, rotating oceanic/atmospheric flows
• Derivation from Navier-Stokes/Euler equations with Boussinesq approximation
and Coriolis force. See Bourgeois-Beale (94), Desjardins-Grenier (98)

• The Rossby number and the geostrophic balance - wind velocity is orthogonal to
the gradient of the pressure in the asymptotic limit
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The Equations

• Ψ(t, x, y, z) : [0, T]× Ω× [0,∞) → R (Ω ⊂ R2)

• The velocity (u, v, 0) is stratified and verifies

(u, v, 0) = (−∂yΨ, ∂xΨ, 0) = ∇⊥
Ψ.

• Notations -

∇ = (∂x, ∂y, 0), ∂ν = −∂z|z=0, ∆ = ∂xx + ∂yy.

• Viscosity parameter r ∈ {0, 1} - inviscid model / viscous model

(∂t +∇⊥
Ψ · ∇)(∆Ψ) = 0 [0, T]× Ω× (0,∞)

(∂t +∇⊥
Ψ · ∇)(∂νΨ) = r∆Ψ [0, T]× Ω× {z = 0}

Ψ(0, x, y, z) = Ψ0 t = 0.
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Main Results



Weak Solutions for The Inviscid Case for R3
+

Theorem (N., ’17)
Choose an initial value ∇Ψ0 with ∆Ψ0 ∈ Lq(R3

+)for q ∈ ( 65 , 3],
∂νΨ

0 ∈ Lp(R2) for p ∈ ( 43 ,∞]. Then there exists a global in time weak
solution such that ∇Ψ ∈ L∞t (L 3p

2 + L
3q
3−q (R3

+)).

• Vasseur-Puel (’14) built weak solutions for ∆Ψ0,∇Ψ0, ∂νΨ0 ∈ L2

• Challenge is for small p and small q - how to define ∇⊥
Ψ · ∇(∂νΨ) and

∇⊥
Ψ · ∇(∆Ψ)?

• Need the right notion of ”weak” solution
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Further Properties of Weak Solutions

2D SQG - A simplified model
• ∆Ψ0 = 0, implying that ∆Ψ(t) = 0 for all t

• ∂νΨ = θ = (−∆)
1
2Ψ, and ∇⊥

Ψ = u = R⊥θ,
∂t(∂νΨ) +∇⊥

Ψ · ∇(∂νΨ) = 0 ⇒ ∂tθ + u · ∇θ = 0

• Weak solutions constructed by Resnick (’95) for θ0 ∈ L2(R2), Marchand for
θ0 ∈ Lp(R2) for p > 4

3 (’08)

Theorem (N., 17)

1. When ∆Ψ = 0, weak solutions to SQG are ”weak solutions” to 3D QG and
vice versa

2. Under appropriate assumptions on p and q, ”weak solutions” to 3D QG
satisfy the transport equations in the usual weak sense.

Theorem (N., 17)

When ∇Ψ ∈ C
(
[0, T); L2(R3+)

)
∩ L∞

(
[0, T)× [0,∞); B̊α3,∞(R2)

)
for α > 1

3 ,

∂

∂t
∥∇Ψ(t)∥L2(R3+) = 0
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The Inviscid Case for Bounded Domains

• We consider a domain of the form Ω× [0,∞) for Ω a smooth, bounded set in R2

• Natural lateral boundary conditions are a mix of Dirichlet and Neumann

Theorem (N.-Vasseur, ’18)

The natural lateral boundary conditions are

• Ψ(t, x, y, z)|∂Ω×[0,∞) = c(t, z)
• ∂

∂t
∫
∂Ω×{z} ∇Ψ(z) · νs = 0

With these boundary conditions, there exists a global weak solutions to inviscid QG
posed on [0,∞)× Ω× [0,∞).

7



The Inviscid Case for Bounded Domains

• We consider a domain of the form Ω× [0,∞) for Ω a smooth, bounded set in R2

• Natural lateral boundary conditions are a mix of Dirichlet and Neumann

Theorem (N.-Vasseur, ’18)

The natural lateral boundary conditions are

• Ψ(t, x, y, z)|∂Ω×[0,∞) = c(t, z)
• ∂

∂t
∫
∂Ω×{z} ∇Ψ(z) · νs = 0

With these boundary conditions, there exists a global weak solutions to inviscid QG
posed on [0,∞)× Ω× [0,∞).

7



The Inviscid Case for Bounded Domains

• We consider a domain of the form Ω× [0,∞) for Ω a smooth, bounded set in R2

• Natural lateral boundary conditions are a mix of Dirichlet and Neumann

Theorem (N.-Vasseur, ’18)

The natural lateral boundary conditions are

• Ψ(t, x, y, z)|∂Ω×[0,∞) = c(t, z)
• ∂

∂t
∫
∂Ω×{z} ∇Ψ(z) · νs = 0

With these boundary conditions, there exists a global weak solutions to inviscid QG
posed on [0,∞)× Ω× [0,∞).

7



The Case with Dissipation

Theorem (N.-Vasseur, (’17))

Consider dissipative (QG) (diffusive term ∆Ψ at z = 0) supplemented
with an initial value ∇Ψ0 ∈ Hs(R3

+) with s ≥ 3. Then there exists a
unique, global in time solution ∇Ψ such that for every T > 0,
∇Ψ ∈ C0(0, T;Hs(R3

+)).

• In particular, if the initial data is smooth (C∞), the unique solution is smooth

• Pure transport allows for propagation of regularity but no smoothing
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Inviscid Models



A Priori Estimates

(∂t +∇⊥
Ψ · ∇)(∆Ψ) = 0 [0, T]× Ω× (0,∞)

(∂t +∇⊥
Ψ · ∇)(∂νΨ) = 0 [0, T]× Ω× {z = 0}

Ψ(0, x, y, z) = Ψ0 t = 0.

• For any p ∈ [1,∞] and q ∈ [1,∞], integrating by parts and using the divergence
free property yields

∥∆Ψ(t)∥Lp(Ω×(0,∞)) ≤ ∥∆Ψ0∥Lp(Ω×(0,∞))

∥∂νΨ(t)∥Lq(Ω) ≤ ∥∆Ψ0∥Lq(Ω×(0,∞))

• Lack of compactness at z = 0 - no strong convergence for ∇⊥
Ψ|z=0 or ∂νΨ
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The Reformulated Problem

(∂t +∇⊥
Ψ · ∇)(∆Ψ) = 0 [0, T]× Ω× (0,∞)

(∂t +∇⊥
Ψ · ∇)(∂νΨ) = 0 [0, T]× Ω× {z = 0}

• The first equation is equal to the divergence of(
∂t +∇⊥

Ψ · ∇
)
(∇Ψ) = 0

• The second equation is the trace of the third component at z = 0 of(
∂t +∇⊥

Ψ · ∇
)
(∇Ψ) = 0

• Inverting the divergence operator with a Neumann condition is not unique
• There exists (∇× Q) · ν = 0 such that the reformulated equation is actually

(∂t +∇⊥
Ψ · ∇)(∇Ψ) = ∇× (Q)

• Weak solutions are defined for ∇Ψ - compactness available
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Boundary Conditions When Ω ̸= R2

• Back to inviscid SQG - ∂νΨ = θ = (−∆)
1
2Ψ, u = ∇⊥

Ψ = R⊥θ

∂tθ + u · ∇θ = 0

• When Ω ̸= R2 , how to define u = R⊥θ = (−∆)−
1
2∇⊥?

• Spectral fractional Laplacian - see work of Constantin, Ignatova, Nguyen
• Requires θ = 0 on ∂Ω ⇒ Ψ = 0 on ∂Ω× [0,∞)

• Our boundary conditions

• Ψ(t, x, y, z)|∂Ω×[0,∞) = c(t, z)
• ∂

∂t
∫
∂Ω×{z} ∇Ψ(z) · ν = 0

• Our solutions do not coincide with those of Constantin-Nguyen
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Viscous Model



Regularity for 2D Critical SQG

• Critical SQG - ∂νΨ = θ = (−∆)
1
2Ψ, u = ∇⊥

Ψ = R⊥θ, ∆Ψ = −(−∆)
1
2 θ

∂tθ + u · ∇θ + (−∆)
1
2 θ = 0

• Global regularity for L2 initial data established by Caffarelli-Vasseur (’10). Several
other proofs by Kiselev-Nazarov-Volberg, Constantin-Vicol,
Constantin-Vicol-Tarfulea
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Difficulties in 3 Dimensions

• The transport equation for ∆Ψ is hyperbolic - no regularization
• Beale-Kato-Majda criterion is necessary (∇⊥

Ψ is a log-Lipschitz velocity field)
• The regularization effects for ∂νΨ are only Cα - how to bootstrap higher?

• Interior vorticity - u = R⊥θ + ũ, ∆Ψ = −(−∆)
1
2 θ + f

∂tθ + u · ∇θ + (−∆)
1
2 θ = f

• A priori bound on f is only L∞t
(
B̊0∞,∞

)
- the equation is critical

• Showing that θ ∈ L∞t
(
B̊1∞,∞

)
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Ongoing Work and Future
Directions



Ongoing Work

Theorem (N.)

Let α < 1
5 . Then weak solutions to inviscid QG on the torus T

3 in the
class Cαt,x are not unique and may dissipate energy.

• Recall energy is conserved when α > 1
3 (N., ’17). This is referred

to as rigidity. Conversely, when α < 1
5 , this theorem

demonstrates flexibility.
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Future Directions

• Smooth solutions to the inviscid model on bounded domains and the validity of
our boundary conditions

• Blow-up on bounded domains?
• Non-uniqueness in other regularity classes
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Thank you

Thanks for your attention!
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