Recent Results for the 3D Quasi-Geostrophic System

Matt Novack

Joint work with Alexis Vasseur

The University of Texas at Austin

Young Researchers Workshop: Kinetic Theory in Description and Applications Oct 25th, 2018

Table of contents

1. 3D Quasi-Geostrophic Flow
2. Main Results

Global Weak Solutions for Inviscid Models
Global Smooth Solutions with Dissipation
3. Inviscid Models

The Reformulated Problem
A Remark for Bounded Domains
4. Viscous Model

Global regularity for 2D SQG
Difficulties in 3 Dimensions
5. Ongoing Work and Future Directions

3D Quasi-Geostrophic Flow

Physical Model

- QG - a model for large time-scale, rotating oceanic/atmospheric flows
- Derivation from Navier-Stokes/Euler equations with Boussinesq approximation and Coriolis force. See Bourgeois-Beale (94), Desjardins-Grenier (98)
- The Rossby number and the geostrophic balance - wind velocity is orthogonal to the gradient of the pressure in the asymptotic limit

The Equations

- $\Psi(t, x, y, z):[0, T] \times \Omega \times[0, \infty) \rightarrow \mathbb{R} \quad\left(\Omega \subset \mathbb{R}^{2}\right)$
- The velocity $(u, v, 0)$ is stratified and verifies

$$
(u, v, 0)=\left(-\partial_{y} \Psi, \partial_{x} \Psi, 0\right)=\bar{\nabla}^{\perp} \Psi
$$

- Notations -

$$
\bar{\nabla}=\left(\partial_{x}, \partial_{y}, 0\right), \quad \partial_{\nu}=-\left.\partial_{z}\right|_{z=0}, \quad \bar{\Delta}=\partial_{x x}+\partial_{y y} .
$$

- Viscosity parameter $r \in\{0,1\}$ - inviscid model / viscous model

$$
\begin{array}{ll}
\left(\partial_{\mathrm{t}}+\bar{\nabla}^{\perp} \psi \cdot \bar{\nabla}\right)(\Delta \Psi)=0 & {[0, T] \times \Omega \times(0, \infty)} \\
\left(\partial_{\mathrm{t}}+\bar{\nabla}^{\perp} \psi \cdot \bar{\nabla}\right)\left(\partial_{\nu} \psi\right)=r \bar{\Delta} \psi & {[0, T] \times \Omega \times\{z=0\}} \\
\Psi(0, x, y, z)=\psi^{0} & t=0
\end{array}
$$

Main Results

Weak Solutions for The Inviscid Case for \mathbb{R}_{+}^{3}

Theorem ($\mathrm{N} .$, '17)
Choose an initial value $\nabla \psi^{0}$ with $\Delta \Psi_{0} \in L^{q}\left(\mathbb{R}_{+}^{3}\right)$ for $q \in\left(\frac{6}{5}, 3\right]$, $\partial_{\nu} \Psi^{0} \in L^{p}\left(\mathbb{R}^{2}\right)$ for $p \in\left(\frac{4}{3}, \infty\right]$. Then there exists a global in time weak solution such that $\nabla \Psi \in L_{t}^{\infty}\left(L^{\frac{3 p}{2}}+L^{\frac{3 q}{3-q}}\left(\mathbb{R}_{+}^{3}\right)\right)$.

Weak Solutions for The Inviscid Case for \mathbb{R}_{+}^{3}

Theorem (N., '17)

Choose an initial value $\nabla \psi^{0}$ with $\Delta \Psi_{0} \in L^{q}\left(\mathbb{R}_{+}^{3}\right)$ for $q \in\left(\frac{6}{5}, 3\right]$, $\partial_{\nu} \Psi^{0} \in L^{p}\left(\mathbb{R}^{2}\right)$ for $p \in\left(\frac{4}{3}, \infty\right]$. Then there exists a global in time weak solution such that $\nabla \Psi \in L_{t}^{\infty}\left(L^{\frac{3 p}{2}}+L^{\frac{3 q}{3-q}}\left(\mathbb{R}_{+}^{3}\right)\right)$.

- Vasseur-Puel ('14) built weak solutions for $\Delta \Psi^{0}, \nabla \Psi^{0}, \partial_{\nu} \Psi^{0} \in L^{2}$

Weak Solutions for The Inviscid Case for \mathbb{R}_{+}^{3}

Theorem (N., '17)

Choose an initial value $\nabla \psi^{0}$ with $\Delta \Psi_{0} \in L^{q}\left(\mathbb{R}_{+}^{3}\right)$ for $q \in\left(\frac{6}{5}, 3\right]$, $\partial_{\nu} \psi^{0} \in L^{p}\left(\mathbb{R}^{2}\right)$ for $p \in\left(\frac{4}{3}, \infty\right]$. Then there exists a global in time weak solution such that $\nabla \Psi \in L_{t}^{\infty}\left(L^{\frac{3 p}{2}}+L^{\frac{3 q}{3-q}}\left(\mathbb{R}_{+}^{3}\right)\right)$.

- Vasseur-Puel ('14) built weak solutions for $\Delta \Psi^{0}, \nabla \Psi^{0}, \partial_{\nu} \Psi^{0} \in L^{2}$
- Challenge is for small p and small q - how to define $\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\left(\partial_{\nu} \Psi\right)$ and $\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}(\Delta \Psi)$?

Weak Solutions for The Inviscid Case for \mathbb{R}_{+}^{3}

Theorem (N., '17)

Choose an initial value $\nabla \psi^{0}$ with $\Delta \Psi_{0} \in L^{q}\left(\mathbb{R}_{+}^{3}\right)$ for $q \in\left(\frac{6}{5}, 3\right]$, $\partial_{\nu} \psi^{0} \in L^{p}\left(\mathbb{R}^{2}\right)$ for $p \in\left(\frac{4}{3}, \infty\right]$. Then there exists a global in time weak solution such that $\nabla \Psi \in L_{t}^{\infty}\left(L^{\frac{3 p}{2}}+L^{\frac{3 q}{3-q}}\left(\mathbb{R}_{+}^{3}\right)\right)$.

- Vasseur-Puel ('14) built weak solutions for $\Delta \Psi^{0}, \nabla \Psi^{0}, \partial_{\nu} \Psi^{0} \in L^{2}$
- Challenge is for small p and small q - how to define $\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\left(\partial_{\nu} \Psi\right)$ and $\bar{\nabla}^{\perp} \psi \cdot \bar{\nabla}(\Delta \Psi)$?
- Need the right notion of "weak" solution

Further Properties of Weak Solutions

2D SQG - A simplified model

- $\Delta \Psi^{0}=0$, implying that $\Delta \Psi(t)=0$ for all t

Further Properties of Weak Solutions

2D SQG - A simplified model

- $\Delta \Psi^{0}=0$, implying that $\Delta \Psi(t)=0$ for all t
- $\partial_{\nu} \Psi=\theta=(-\bar{\Delta})^{\frac{1}{2}} \Psi$, and $\bar{\nabla}^{\perp} \Psi=u=R^{\perp} \theta$,

$$
\partial_{t}\left(\partial_{\nu} \Psi\right)+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\left(\partial_{\nu} \Psi\right)=0 \quad \Rightarrow \quad \partial_{\mathrm{t}} \theta+u \cdot \bar{\nabla} \theta=0
$$

Further Properties of Weak Solutions

2D SQG - A simplified model

- $\Delta \Psi^{0}=0$, implying that $\Delta \Psi(t)=0$ for all t
- $\partial_{\nu} \Psi=\theta=(-\bar{\Delta})^{\frac{1}{2}} \Psi$, and $\bar{\nabla}^{\perp} \Psi=u=R^{\perp} \theta$,

$$
\partial_{t}\left(\partial_{\nu} \Psi\right)+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\left(\partial_{\nu} \Psi\right)=0 \quad \Rightarrow \quad \partial_{\mathrm{t}} \theta+u \cdot \bar{\nabla} \theta=0
$$

- Weak solutions constructed by Resnick ('95) for $\theta^{0} \in L^{2}\left(\mathbb{R}^{2}\right)$, Marchand for $\theta^{0} \in L^{p}\left(\mathbb{R}^{2}\right)$ for $p>\frac{4}{3}$ ('08)

Further Properties of Weak Solutions

2D SQG - A simplified model

- $\Delta \Psi^{0}=0$, implying that $\Delta \Psi(t)=0$ for all t
- $\partial_{\nu} \Psi=\theta=(-\bar{\Delta})^{\frac{1}{2}} \Psi$, and $\bar{\nabla}^{\perp} \Psi=u=R^{\perp} \theta$,

$$
\partial_{t}\left(\partial_{\nu} \Psi\right)+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\left(\partial_{\nu} \Psi\right)=0 \quad \Rightarrow \quad \partial_{\mathrm{t}} \theta+u \cdot \bar{\nabla} \theta=0
$$

- Weak solutions constructed by Resnick ('95) for $\theta^{0} \in L^{2}\left(\mathbb{R}^{2}\right)$, Marchand for $\theta^{0} \in L^{p}\left(\mathbb{R}^{2}\right)$ for $p>\frac{4}{3}$ ('08)
Theorem (N., 17)

1. When $\Delta \Psi=0$, weak solutions to $S Q G$ are "weak solutions" to 3D QG and vice versa
2. Under appropriate assumptions on p and q, "weak solutions" to 3D QG satisfy the transport equations in the usual weak sense.

Further Properties of Weak Solutions

2D SQG - A simplified model

- $\Delta \Psi^{0}=0$, implying that $\Delta \Psi(t)=0$ for all t
- $\partial_{\nu} \Psi=\theta=(-\bar{\Delta})^{\frac{1}{2}} \Psi$, and $\bar{\nabla}^{\perp} \Psi=u=R^{\perp} \theta$,

$$
\partial_{\mathrm{t}}\left(\partial_{\nu} \Psi\right)+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\left(\partial_{\nu} \Psi\right)=0 \quad \Rightarrow \quad \partial_{\mathrm{t}} \theta+u \cdot \bar{\nabla} \theta=0
$$

- Weak solutions constructed by Resnick ('95) for $\theta^{0} \in L^{2}\left(\mathbb{R}^{2}\right)$, Marchand for $\theta^{0} \in L^{p}\left(\mathbb{R}^{2}\right)$ for $p>\frac{4}{3}$ ('08)
Theorem (N., 17)

1. When $\Delta \Psi=0$, weak solutions to SQG are "weak solutions" to 3D QG and vice versa
2. Under appropriate assumptions on p and q, "weak solutions" to 3D QG satisfy the transport equations in the usual weak sense.

Theorem (N., 17)

When $\nabla \Psi \in C\left([0, T) ; L^{2}\left(\mathbb{R}_{+}^{3}\right)\right) \cap L^{\infty}\left([0, T) \times[0, \infty) ; \dot{B}_{3, \infty}^{\alpha}\left(\mathbb{R}^{2}\right)\right)$ for $\alpha>\frac{1}{3}$,

$$
\frac{\partial}{\partial t}\|\nabla \Psi(t)\|_{L^{2}\left(\mathbb{R}_{+}^{3}\right)}=0
$$

The Inviscid Case for Bounded Domains

- We consider a domain of the form $\Omega \times[0, \infty)$ for Ω a smooth, bounded set in \mathbb{R}^{2}

The Inviscid Case for Bounded Domains

- We consider a domain of the form $\Omega \times[0, \infty)$ for Ω a smooth, bounded set in \mathbb{R}^{2}
- Natural lateral boundary conditions are a mix of Dirichlet and Neumann

The Inviscid Case for Bounded Domains

- We consider a domain of the form $\Omega \times[0, \infty)$ for Ω a smooth, bounded set in \mathbb{R}^{2}
- Natural lateral boundary conditions are a mix of Dirichlet and Neumann

Theorem (N.-Vasseur, '18)

The natural lateral boundary conditions are

- $\left.\Psi(t, x, y, z)\right|_{\partial \Omega \times[0, \infty)}=c(t, z)$
- $\frac{\partial}{\partial t} \int_{\partial \Omega \times\{z\}} \bar{\nabla} \Psi(z) \cdot \nu_{s}=0$

With these boundary conditions, there exists a global weak solutions to inviscid QG posed on $[0, \infty) \times \Omega \times[0, \infty)$.

The Case with Dissipation

Theorem (N.-Vasseur, ('17))

Consider dissipative ($Q G$) (diffusive term $\bar{\Delta} \psi$ at $z=0$) supplemented with an initial value $\nabla \Psi^{0} \in H^{s}\left(\mathbb{R}_{+}^{3}\right)$ with $s \geq 3$. Then there exists a unique, global in time solution $\nabla \Psi$ such that for every $T>0$, $\nabla \Psi \in C^{0}\left(0, T ; H^{5}\left(\mathbb{R}_{+}^{3}\right)\right)$.

The Case with Dissipation

Theorem (N.-Vasseur, ('17))

Consider dissipative (QG) (diffusive term $\bar{\Delta} \Psi$ at $z=0$) supplemented with an initial value $\nabla \Psi^{0} \in H^{5}\left(\mathbb{R}_{+}^{3}\right)$ with $s \geq 3$. Then there exists a unique, global in time solution $\nabla \Psi$ such that for every $T>0$, $\nabla \Psi \in C^{0}\left(0, T ; H^{5}\left(\mathbb{R}_{+}^{3}\right)\right)$.

- In particular, if the initial data is smooth $\left(C^{\infty}\right)$, the unique solution is smooth

The Case with Dissipation

Theorem (N.-Vasseur, ('17))

Consider dissipative (QG) (diffusive term $\bar{\Delta} \Psi$ at $z=0$) supplemented with an initial value $\nabla \Psi^{0} \in H^{s}\left(\mathbb{R}_{+}^{3}\right)$ with $s \geq 3$. Then there exists a unique, global in time solution $\nabla \Psi$ such that for every $T>0$, $\nabla \Psi \in C^{0}\left(0, T ; H^{5}\left(\mathbb{R}_{+}^{3}\right)\right)$.

- In particular, if the initial data is smooth $\left(C^{\infty}\right)$, the unique solution is smooth
- Pure transport allows for propagation of regularity but no smoothing

Inviscid Models

A Priori Estimates

$$
\begin{array}{lr}
\left(\partial_{\mathrm{t}}+\bar{\nabla}^{\perp} \psi \cdot \bar{\nabla}\right)(\Delta \psi)=0 & {[0, T] \times \Omega \times(0, \infty)} \\
\left(\partial_{\mathrm{t}}+\bar{\nabla}^{\perp} \psi \cdot \bar{\nabla}\right)\left(\partial_{\nu} \psi\right)=0 & {[0, T] \times \Omega \times\{z=0\}} \\
\psi(0, x, y, z)=\psi^{0} & t=0 .
\end{array}
$$

- For any $p \in[1, \infty]$ and $q \in[1, \infty]$, integrating by parts and using the divergence free property yields

$$
\begin{gathered}
\|\Delta \psi(t)\|_{L^{p}(\Omega \times(0, \infty))} \leq\left\|\Delta \Psi^{0}\right\|_{L p(\Omega \times(0, \infty))} \\
\left\|\partial_{\nu} \Psi(t)\right\|_{L q(\Omega)} \leq\left\|\Delta \Psi^{0}\right\|_{L q}(\Omega \times(0, \infty))
\end{gathered}
$$

- Lack of compactness at $z=0$ - no strong convergence for $\left.\bar{\nabla}^{\perp} \Psi\right|_{z=0}$ or $\partial_{\nu} \psi$

The Reformulated Problem

$$
\begin{array}{lr}
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\Delta \Psi)=0 & {[0, T] \times \Omega \times(0, \infty)} \\
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)\left(\partial_{\nu} \Psi\right)=0 & {[0, T] \times \Omega \times\{z=0\}}
\end{array}
$$

The Reformulated Problem

$$
\begin{array}{lr}
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\Delta \Psi)=0 & {[0, T] \times \Omega \times(0, \infty)} \\
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)\left(\partial_{\nu} \Psi\right)=0 & {[0, T] \times \Omega \times\{z=0\}}
\end{array}
$$

- The first equation is equal to the divergence of

$$
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\nabla \Psi)=0
$$

The Reformulated Problem

$$
\begin{array}{lr}
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\Delta \Psi)=0 & {[0, T] \times \Omega \times(0, \infty)} \\
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)\left(\partial_{\nu} \Psi\right)=0 & {[0, T] \times \Omega \times\{z=0\}}
\end{array}
$$

- The first equation is equal to the divergence of

$$
\left(\partial_{\mathrm{t}}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\nabla \Psi)=0
$$

- The second equation is the trace of the third component at $z=0$ of

$$
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\nabla \Psi)=0
$$

The Reformulated Problem

$$
\begin{array}{lr}
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\Delta \Psi)=0 & {[0, T] \times \Omega \times(0, \infty)} \\
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)\left(\partial_{\nu} \Psi\right)=0 & {[0, T] \times \Omega \times\{z=0\}}
\end{array}
$$

- The first equation is equal to the divergence of

$$
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\nabla \Psi)=0
$$

- The second equation is the trace of the third component at $z=0$ of

$$
\left(\partial_{t}+\bar{\nabla}^{\perp} \psi \cdot \bar{\nabla}\right)(\nabla \Psi)=0
$$

- Inverting the divergence operator with a Neumann condition is not unique

The Reformulated Problem

$$
\begin{array}{lr}
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\Delta \Psi)=0 & {[0, T] \times \Omega \times(0, \infty)} \\
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)\left(\partial_{\nu} \Psi\right)=0 & {[0, T] \times \Omega \times\{z=0\}}
\end{array}
$$

- The first equation is equal to the divergence of

$$
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\nabla \Psi)=0
$$

- The second equation is the trace of the third component at $z=0$ of

$$
\left(\partial_{t}+\bar{\nabla}^{\perp} \psi \cdot \bar{\nabla}\right)(\nabla \Psi)=0
$$

- Inverting the divergence operator with a Neumann condition is not unique
- There exists $(\nabla \times Q) \cdot \nu=0$ such that the reformulated equation is actually

$$
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\nabla \Psi)=\nabla \times(Q)
$$

The Reformulated Problem

$$
\begin{array}{lr}
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\Delta \Psi)=0 & {[0, T] \times \Omega \times(0, \infty)} \\
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)\left(\partial_{\nu} \Psi\right)=0 & {[0, T] \times \Omega \times\{z=0\}}
\end{array}
$$

- The first equation is equal to the divergence of

$$
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\nabla \Psi)=0
$$

- The second equation is the trace of the third component at $z=0$ of

$$
\left(\partial_{t}+\bar{\nabla}^{\perp} \psi \cdot \bar{\nabla}\right)(\nabla \Psi)=0
$$

- Inverting the divergence operator with a Neumann condition is not unique
- There exists $(\nabla \times Q) \cdot \nu=0$ such that the reformulated equation is actually

$$
\left(\partial_{t}+\bar{\nabla}^{\perp} \Psi \cdot \bar{\nabla}\right)(\nabla \Psi)=\nabla \times(Q)
$$

- Weak solutions are defined for $\nabla \boldsymbol{\Psi}$ - compactness available

Boundary Conditions When $\Omega \neq \mathbb{R}^{2}$

- Back to inviscid SQG $-\partial_{\nu} \Psi=\theta=(-\bar{\Delta})^{\frac{1}{2}} \Psi, u=\bar{\nabla}^{\perp} \Psi=\mathcal{R}^{\perp} \theta$

$$
\partial_{\mathrm{t}} \theta+u \cdot \bar{\nabla} \theta=0
$$

Boundary Conditions When $\Omega \neq \mathbb{R}^{2}$

- Back to inviscid SQG $-\partial_{\nu} \Psi=\theta=(-\bar{\Delta})^{\frac{1}{2}} \Psi, u=\bar{\nabla}^{\perp} \Psi=\mathcal{R}^{\perp} \theta$

$$
\partial_{\mathrm{t}} \theta+u \cdot \bar{\nabla} \theta=0
$$

- When $\Omega \neq \mathbb{R}^{2}$, how to define $u=\mathcal{R}^{\perp} \theta=(-\bar{\Delta})^{-\frac{1}{2}} \bar{\nabla}^{\perp}$?

Boundary Conditions When $\Omega \neq \mathbb{R}^{2}$

- Back to inviscid SQG - $\partial_{\nu} \Psi=\theta=(-\bar{\Delta})^{\frac{1}{2}} \Psi, u=\bar{\nabla}^{\perp} \Psi=\mathcal{R}^{\perp} \theta$

$$
\partial_{\mathrm{t}} \theta+u \cdot \bar{\nabla} \theta=0
$$

- When $\Omega \neq \mathbb{R}^{2}$, how to define $u=\mathcal{R}^{\perp} \theta=(-\bar{\Delta})^{-\frac{1}{2}} \bar{\nabla}^{\perp}$?
- Spectral fractional Laplacian - see work of Constantin, Ignatova, Nguyen

Boundary Conditions When $\Omega \neq \mathbb{R}^{2}$

- Back to inviscid SQG - $\partial_{\nu} \Psi=\theta=(-\bar{\Delta})^{\frac{1}{2}} \Psi, u=\bar{\nabla}^{\perp} \Psi=\mathcal{R}^{\perp} \theta$

$$
\partial_{\mathrm{t}} \theta+u \cdot \bar{\nabla} \theta=0
$$

- When $\Omega \neq \mathbb{R}^{2}$, how to define $u=\mathcal{R}^{\perp} \theta=(-\bar{\Delta})^{-\frac{1}{2}} \bar{\nabla}^{\perp}$?
- Spectral fractional Laplacian - see work of Constantin, Ignatova, Nguyen
- Requires $\theta=0$ on $\partial \Omega \Rightarrow \Psi=0$ on $\partial \Omega \times[0, \infty)$

Boundary Conditions When $\Omega \neq \mathbb{R}^{2}$

- Back to inviscid SQG $-\partial_{\nu} \Psi=\theta=(-\bar{\Delta})^{\frac{1}{2}} \Psi, u=\bar{\nabla}^{\perp} \Psi=\mathcal{R}^{\perp} \theta$

$$
\partial_{\mathrm{t}} \theta+u \cdot \bar{\nabla} \theta=0
$$

- When $\Omega \neq \mathbb{R}^{2}$, how to define $u=\mathcal{R}^{\perp} \theta=(-\bar{\Delta})^{-\frac{1}{2}} \bar{\nabla}^{\perp}$?
- Spectral fractional Laplacian - see work of Constantin, Ignatova, Nguyen
- Requires $\theta=0$ on $\partial \Omega \Rightarrow \Psi=0$ on $\partial \Omega \times[0, \infty)$
- Our boundary conditions
- $\left.\Psi(t, x, y, z)\right|_{\partial \Omega \times[0, \infty)}=c(t, z)$
- $\frac{\partial}{\partial t} \int_{\partial \Omega \times\{z\}} \bar{\nabla} \Psi(z) \cdot \nu=0$

Boundary Conditions When $\Omega \neq \mathbb{R}^{2}$

- Back to inviscid SQG $-\partial_{\nu} \Psi=\theta=(-\bar{\Delta})^{\frac{1}{2}} \Psi, u=\bar{\nabla}^{\perp} \Psi=\mathcal{R}^{\perp} \theta$

$$
\partial_{t} \theta+u \cdot \bar{\nabla} \theta=0
$$

- When $\Omega \neq \mathbb{R}^{2}$, how to define $u=\mathcal{R}^{\perp} \theta=(-\bar{\Delta})^{-\frac{1}{2}} \bar{\nabla}^{\perp}$?
- Spectral fractional Laplacian - see work of Constantin, Ignatova, Nguyen
- Requires $\theta=0$ on $\partial \Omega \Rightarrow \Psi=0$ on $\partial \Omega \times[0, \infty)$
- Our boundary conditions
- $\left.\Psi(t, x, y, z)\right|_{\partial \Omega \times[0, \infty)}=c(t, z)$
- $\frac{\partial}{\partial t} \int_{\partial \Omega \times\{z\}} \bar{\nabla} \Psi(z) \cdot \nu=0$
- Our solutions do not coincide with those of Constantin-Nguyen

Viscous Model

Regularity for 2D Critical SQG

- Critical SQG $-\partial_{\nu} \Psi=\theta=(-\bar{\Delta})^{\frac{1}{2}} \Psi, u=\bar{\nabla}^{\perp} \Psi=\mathcal{R}^{\perp} \theta, \bar{\Delta} \Psi=-(-\bar{\Delta})^{\frac{1}{2}} \theta$

$$
\partial_{t} \theta+u \cdot \bar{\nabla} \theta+(-\bar{\Delta})^{\frac{1}{2}} \theta=0
$$

- Global regularity for L^{2} initial data established by Caffarelli-Vasseur ('10). Several other proofs by Kiselev-Nazarov-Volberg, Constantin-Vicol, Constantin-Vicol-Tarfulea

Difficulties in 3 Dimensions

- The transport equation for $\Delta \Psi$ is hyperbolic - no regularization
- Beale-Kato-Majda criterion is necessary $\left(\bar{\nabla}^{\perp} \Psi\right.$ is a log-Lipschitz velocity field)
- The regularization effects for $\partial_{\nu} \psi$ are only C^{α} - how to bootstrap higher?

Difficulties in 3 Dimensions

- The transport equation for $\Delta \Psi$ is hyperbolic - no regularization
- Beale-Kato-Majda criterion is necessary ($\bar{\nabla}^{\perp} \Psi$ is a log-Lipschitz velocity field)
- The regularization effects for $\partial_{\nu} \psi$ are only C^{α} - how to bootstrap higher?
- Interior vorticity $-u=\mathcal{R}^{\perp} \theta+\tilde{u}, \bar{\Delta} \psi=-(-\bar{\Delta})^{\frac{1}{2}} \theta+f$

$$
\partial_{t} \theta+u \cdot \bar{\nabla} \theta+(-\bar{\Delta})^{\frac{1}{2}} \theta=f
$$

Difficulties in 3 Dimensions

- The transport equation for $\Delta \Psi$ is hyperbolic - no regularization
- Beale-Kato-Majda criterion is necessary ($\bar{\nabla}^{\perp} \Psi$ is a log-Lipschitz velocity field)
- The regularization effects for $\partial_{\nu} \psi$ are only C^{α} - how to bootstrap higher?
- Interior vorticity $-u=\mathcal{R}^{\perp} \theta+\tilde{u}, \bar{\Delta} \psi=-(-\bar{\Delta})^{\frac{1}{2}} \theta+f$

$$
\partial_{t} \theta+u \cdot \bar{\nabla} \theta+(-\bar{\Delta})^{\frac{1}{2}} \theta=f
$$

- A priori bound on f is only $L_{t}^{\infty}\left(\dot{B}_{\infty, \infty}^{0}\right)$ - the equation is critical

Difficulties in 3 Dimensions

- The transport equation for $\Delta \Psi$ is hyperbolic - no regularization
- Beale-Kato-Majda criterion is necessary $\left(\bar{\nabla}^{\perp} \Psi\right.$ is a log-Lipschitz velocity field)
- The regularization effects for $\partial_{\nu} \psi$ are only C^{α} - how to bootstrap higher?
- Interior vorticity $-u=\mathcal{R}^{\perp} \theta+\tilde{u}, \bar{\Delta} \psi=-(-\bar{\Delta})^{\frac{1}{2}} \theta+f$

$$
\partial_{t} \theta+u \cdot \bar{\nabla} \theta+(-\bar{\Delta})^{\frac{1}{2}} \theta=f
$$

- A priori bound on f is only $L_{t}^{\infty}\left(\dot{B}_{\infty, \infty}^{0}\right)$ - the equation is critical
- Showing that $\theta \in L_{t}^{\infty}\left(\dot{B}_{\infty, \infty}^{1}\right)$ requires a combination of De Giorgi, potential theory, Littlewood-Paley techniques

Ongoing Work and Future Directions

Ongoing Work

Theorem (N.)

Let $\alpha<\frac{1}{5}$. Then weak solutions to inviscid QG on the torus \mathbb{T}^{3} in the class $C_{t, x}^{\alpha}$ are not unique and may dissipate energy.

- Recall energy is conserved when $\alpha>\frac{1}{3}$ (N., '17). This is referred to as rigidity. Conversely, when $\alpha<\frac{1}{5}$, this theorem demonstrates flexibility.

Future Directions

- Smooth solutions to the inviscid model on bounded domains and the validity of our boundary conditions
- Blow-up on bounded domains?
- Non-uniqueness in other regularity classes

Thank you

Thanks for your attention!

